Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chang-Hua Ge, Ding-Ben Chen,* Fu-You Pan, Ling Huang and Jian-Guo Yang

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail: cdb23@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.055 wR factor = 0.143 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N'-Benzoyl-4H-1,2,4-triazole-3-carbohydrazide

In the crystal structure of the title compound, $C_{10}H_9N_5O_2$, intermolecular $N-H\cdots N$ [$H\cdots N = 2.13$ (2) Å] and $N-H\cdots O$ [$H\cdots O = 2.016$ (18) and 2.05 (2) Å] hydrogen bonds link molecules into a two-dimensional framework. Received 11 July 2005 Accepted 4 August 2005 Online 31 August 2005

Comment

Recently, compounds containing the 1H-1,2,4-triazole group have aroused much interest because of their biological activities, such as fungicidal (Oita & Uchida, 1998), antifugal, antitumoural (Maravalli *et al.*, 2000), antibacterial (Zhou *et al.*, 1998*a*), and plant growth regulating activity (Zhou *et al.*, 1998*b*). In a search for new compounds with bioactivity, we have synthesized triazole compounds derived from 1H-1,2,4triazole-3-carbohydrazide and have recently reported the crystal structures of two such compounds (Chen *et al.*, 2005; Pan & Yang, 2005). We report here the synthesis and crystal structure of *N'*-benzoyl-4*H*-1,2,4-triazole-3-carbohydrazide, (I).

The title compound is shown in Fig. 1 and selected bond lengths and angles are listed in Table 1. The sequence of C=O, C-N and N-N bond lengths in the central part of the molecule is consistent with the presence of a conjugated system. The bond distances and angles within the triazole and

Figure 1 The structure of compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Acta Cryst. (2005). E61, o3081-o3082

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 2

Packing diagram (Spek, 2003) for (I), showing hydrogen bonds as dashed lines. Colour code: red O, blue N and black C. H atoms not involved in hydrogen bonding have been omitted.

phenyl rings are normal and agree with the corresponding values found in 4-phenyl-1-(1H-1,2,4-triazole-3-ylcarbonyl)thiosemicarbazide (Chen et al., 2005). The dihedral angle between the triazole and phenyl rings is $29.3 (1)^{\circ}$.

In the crystal structure, intermolecular N-H···N and N-H···O hydrogen bonds link molecules into a two-dimensional framework (Table 2 and Fig. 2).

Experimental

1H-1,2,4-Triazole-3-carbohydrazide (0.02 mol, 2.54 g) was dissolved in pyridine (50 ml) and benzoyl chloride (0.02 mol, 2.81 g) was added dropwise to the solution. The mixture was refluxed for 5 h and distilled. A white solid was precipitated by dilution with cold water (100 ml). This product was filtered off, washed with cold water (2 \times 30 ml) and recrystallized from ethanol. (yield: 81%; m.p. 521-522 K). IR ν_{max} (KBr, cm⁻¹): 3310, 3190, 1691.5, 1649.5, 1559.3, 1527.5, 1481.2, 1268.1, 1110.0, 873.7, 722.3, 693.4. ¹H NMR (200 MHz, DMSO): § 14.62 (1H), 10.40-10.60 (2H), 8.79 (1H), 7.85-7.98 (2H), 7.45-7.70 (3H).

Crystal data

 $C_{10}H_9N_5O_2$ $M_r = 231.22$ Monoclinic, $P2_1/c$ a = 5.3572 (8) Å b = 21.890 (3) Å $\theta = 5.8 - 55.9^{\circ}$ c = 9.2502 (14) Å $\beta = 100.082 \ (3)^{\circ}$ V = 1068.0 (3) Å³ Block, colourless $0.52 \times 0.35 \times 0.33~\text{mm}$ Z = 4

 $D_r = 1.438 \text{ Mg m}^{-3}$ Mo Ka radiation Cell parameters from 2517 reflections $\mu = 0.11~\mathrm{mm}^{-1}$ T = 293 (2) K

Data collection

Siemens SMART CCD area- detector diffractometer	2332 independent reflections 1799 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.132$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}$
(SADABS; Bruker, 2002)	$h = -6 \rightarrow 6$
$T_{\min} = 0.541, \ T_{\max} = 0.970$	$k = -23 \rightarrow 27$
6209 measured reflections	$l = -11 \rightarrow 9$
Refinement	
Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_0^2) + (0.0736P)^2]$
$wR(F^2) = 0.143$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma) < 0.001$

Table 1

2332 reflections

190 parameters

Selected geometric parameters (Å, °).

01-C1	1.2249 (18)	N1-N2	1.3848 (18)
O2-C4 N1-C1	1.2236 (19) 1.336 (2)	N2-C4	1.346 (2)
C1-N1-N2	118.82 (13)	C4-N2-N1	119.99 (14)

 $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.44$ e Å⁻³

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5-H5\cdots O2^{i}$	0.88 (2)	2.02 (2)	2.7681 (18)	142 (2)
$N2-H2\cdots O1^{ii}$	0.91 (2)	2.05 (2)	2.9019 (18)	156 (2)
$N1-H1\cdots N4^{iii}$	0.87 (2)	2.13 (2)	2.984 (2)	164 (2)
Symmetry codes: (i)	-r - v + 1 - 7	(ii) - r + 1 - i	1 + 1 - 7 + 1 (iii) r	±1 n 7

metry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1, y, z.

All H atoms were refined independently with isotropic displacement parameters. The higher than normal R_{int} value of 0.13 may reflect the poor quality of the data and in turn the lowered precision of the structure.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, (2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of the People's Republic of China (grant No. M203115).

References

- Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SADABS (Version 2.03) and SHELXTL. Bruker AXS Inc., Madison, Winsonsin, USA.
- Chen, D.-B., Huang, L., Pan, F.-Y. & Yang, J.-G. (2005). Acta Cryst. E61, 0836-0837.
- Maravalli, P. B., Gudasi, K. B. & Goudar, T. R. (2000). Transition Met. Chem. 25, 411-414.
- Oita, S. & Uchida, T. (1998). Jpn Patent No. 10212287 (11 August, p. 7).
- Pan, F.-Y. & Yang, J.-G. (2005). Acta Cryst. E61, 063-064.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhou, Z. H., Zhao, J., Peng, Y. B. & Zhao, G. F. (1998a). Yingyong Huaxue, 15, 72-75.
- Zhou, Z. H., Zhao, J., Peng, Y. B. & Zhao, G. F. (1998b). Huaxue Tongbao, 8, 35-38.