Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chang-Hua Ge, Ding-Ben Chen,* Fu-You Pan, Ling Huang and Jian-Guo Yang

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail: cdb23@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.055$
$w R$ factor $=0.143$
Data-to-parameter ratio $=12.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N^{\prime}-Benzoyl-4H-1,2,4-triazole-3-carbohydrazide

In the crystal structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}[\mathrm{H} \cdots \mathrm{N}=2.13(2) \AA]$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}[\mathrm{H} \cdots \mathrm{O}=2.016$ (18) and 2.05 (2) Å] hydrogen bonds link molecules into a two-dimensional framework.

Comment

Recently, compounds containing the $1 H-1,2,4$-triazole group have aroused much interest because of their biological activities, such as fungicidal (Oita \& Uchida, 1998), antifugal, antitumoural (Maravalli et al., 2000), antibacterial (Zhou et al., 1998a), and plant growth regulating activity (Zhou et al., 1998b). In a search for new compounds with bioactivity, we have synthesized triazole compounds derived from $1 H-1,2,4-$ triazole-3-carbohydrazide and have recently reported the crystal structures of two such compounds (Chen et al., 2005; Pan \& Yang, 2005). We report here the synthesis and crystal structure of N^{\prime}-benzoyl-4H-1,2,4-triazole-3-carbohydrazide, (I).

(I)

The title compound is shown in Fig. 1 and selected bond lengths and angles are listed in Table 1. The sequence of $\mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bond lengths in the central part of the molecule is consistent with the presence of a conjugated system. The bond distances and angles within the triazole and

Figure 1
The structure of compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Received 11 July 2005
Accepted 4 August 2005
Online 31 August 2005

Packing diagram (Spek, 2003) for (I), showing hydrogen bonds as dashed lines. Colour code: red O, blue N and black C . H atoms not involved in hydrogen bonding have been omitted.
phenyl rings are normal and agree with the corresponding values found in 4-phenyl-1-($1 \mathrm{H}-1,2,4$-triazole-3-ylcarbonyl)thiosemicarbazide (Chen et al., 2005). The dihedral angle between the triazole and phenyl rings is $29.3(1)^{\circ}$.

In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into a two-dimensional framework (Table 2 and Fig. 2).

Experimental

$1 H-1,2,4$-Triazole-3-carbohydrazide ($0.02 \mathrm{~mol}, 2.54 \mathrm{~g}$) was dissolved in pyridine (50 ml) and benzoyl chloride ($0.02 \mathrm{~mol}, 2.81 \mathrm{~g}$) was added dropwise to the solution. The mixture was refluxed for 5 h and distilled. A white solid was precipitated by dilution with cold water $(100 \mathrm{ml})$. This product was filtered off, washed with cold water $(2 \times$ 30 ml) and recrystallized from ethanol. (yield: 81%; m.p. 521-522 K). IR $\nu_{\text {max }}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3310,3190,1691.5,1649.5,1559.3,1527.5$, 1481.2, 1268.1, 1110.0, 873.7, 722.3, 693.4. ${ }^{1} \mathrm{H}$ NMR (200 MHz , DMSO): $\delta 14.62(1 \mathrm{H}), 10.40-10.60(2 \mathrm{H}), 8.79(1 \mathrm{H}), 7.85-7.98(2 \mathrm{H})$, 7.45-7.70 (3H).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \\
& M_{r}=231.22 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=5.3572(8) \AA \\
& b=21.890(3) \AA \\
& c=9.2502(14) \AA \\
& \beta=100.082(3)^{\circ} \\
& V=1068.0(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.438 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2517 reflections
$\theta=5.8-55.9^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.52 \times 0.35 \times 0.33 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.541, T_{\text {max }}=0.970$
6209 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.143$
$S=1.00$
2332 reflections
190 parameters

2332 independent reflections
1799 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.132$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-23 \rightarrow 27$
$l=-11 \rightarrow 9$

All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0736 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.2249(18)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.3848(18)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.2236(19)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.346(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.336(2)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$118.82(13)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{N} 1$	$119.99(14)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(2)$	$2.02(2)$	$2.7681(18)$	$142(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{1 i}$	$0.91(2)$	$2.05(2)$	$2.9019(18)$	$156(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{4 i i}$	$0.87(2)$	$2.13(2)$	$2.984(2)$	$164(2)$

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$; (iii) $x+1, y, z$.
All H atoms were refined independently with isotropic displacement parameters. The higher than normal $R_{\text {int }}$ value of 0.13 may reflect the poor quality of the data and in turn the lowered precision of the structure.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, (2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of the People's Republic of China (grant No. M203115).

References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SADABS (Version 2.03) and SHELXTL. Bruker AXS Inc., Madison, Winsonsin, USA.
Chen, D.-B., Huang, L., Pan, F.-Y. \& Yang, J.-G. (2005). Acta Cryst. E61, o836o837.
Maravalli, P. B., Gudasi, K. B. \& Goudar, T. R. (2000). Transition Met. Chem. 25, 411-414.
Oita, S. \& Uchida, T. (1998). Jpn Patent No. 10212287 (11 August, p. 7).
Pan, F.-Y. \& Yang, J.-G. (2005). Acta Cryst. E61, o63-o64.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhou, Z. H., Zhao, J., Peng, Y. B. \& Zhao, G. F. (1998a). Yingyong Huaxue, 15, 72-75.
Zhou, Z. H., Zhao, J., Peng, Y. B. \& Zhao, G. F. (1998b). Huaxue Tongbao, 8, 35-38.

